Key components
Modern augmented analytics (also known as AI analytics) is powered by a cloud-based, end-to-end data integration and analytics platform. This platform helps you manage complex data across its lifecycle as well as perform the necessary types of analytics. Artificial intelligence enhances each aspect of your data analysis by automating processes, enabling advanced techniques, and delivering insights and recommended actions.
Let’s walk through the diagram above.
Data Collection and Preparation: AI streamlines the data collection and preparation process through automated gathering, cleaning, and integration of information from diverse sources. AI algorithms possess the capability to scrutinize big data sets for potential errors or inconsistencies and to recognize specific attributes within data such as personal information. They can also propose appropriate data refinement techniques, ultimately enhancing the effectiveness and precision of data preparation.
Data Exploration and Visualization: Sophisticated algorithms for analysis and visualization bolster the processes of data discovery, mining, and representation. AI methods, including clustering and anomaly detection, assist in revealing concealed patterns and anomalies within the data. Visualization tools driven by AI provide interactive and user-friendly visual depictions, allowing you to more efficiently explore intricate data sets and gain actionable insights.
Machine Learning and Statistical Analysis: Machine Learning (ML) is a subset of AI that automates the construction of predictive models. It enables models to learn from historical data, recognize patterns, and make predictions or decisions with minimal human intervention. ML models serve as the foundation for a wide range of AI-powered data analytics applications, including recommendation systems and search-based analytics in natural language processing. The best augmented analytics tools incorporate AutoML capabilities, facilitating the creation of customized ML models without the need for extensive training. Explainable AI (XAI) refers to models and systems that can provide clear and understandable explanations for their decisions or outputs. Additionally, AI algorithms like neural networks support advanced techniques like deep learning, enhancing the precision and complexity of modeling for diverse use cases.
Natural Language Processing (NLP) and Natural Language Generation (NLG): NLP serves a multifaceted role in data analytics. It resolves language ambiguities, structures data, and facilitates seamless communication between computers and users for tasks such as reading, speech recognition, and sentiment analysis. This enables immediate and coherent responses through NLG. Furthermore, NLP supports research endeavors by extracting crucial facts, relationships, and summaries from vast amounts of text-based data, while also conducting sentiment analysis to discern the emotional tone. NLG complements these capabilities by empowering analytics tools to offer easily understandable responses and generate reports in your language. This automation of routine analyses not only saves time and resources but also aids compliance teams in identifying vital information from structured data, providing context, explanations, and potential next steps. Advanced NLG tools, augmented with machine learning capabilities, can furnish in-depth answers to complex queries.
Predictive Analytics: AI empowers the development of highly precise and robust prediction models. Through the application of AI algorithms, these models can efficiently analyze extensive and varied datasets, adeptly capturing intricate, nonlinear relationships, and effectively managing complex features. Techniques like ensemble learning and deep neural networks, inherent to AI, further enhance the accuracy and resilience of these predictive insights.
Prescriptive Analytics: Prescriptive analytics involves employing sophisticated methods and tools to scrutinize data and content, offering specific recommendations for the most advantageous course of action or strategic approach going forward. It can also facilitate automated decisions in other apps such as CRM or ERP software. In essence, it addresses the fundamental question: "What is the best course of action?"