
QLIKVIEW ARCHITECTURE AND
SYSTEM RESOURCE USAGE

QlikView Technical Brief

www.qlikview.com

April 2011

 | Page 2

Introduction

This technical brief covers an overview of the QlikView product components and architecture
and provides a technical discussion on how QlikView utilizes system resources such as CPU
and RAM.

The first section, QlikView Architecture, provides an understanding of the product components
and how they fit together to constitute a typical deployment scenario.

The second section, QlikView System Resource Usage describes how QlikView utilizes and
interacts with server hardware resources, explains QlikView’s approach to data compression
and discusses how the different QlikView components use different system resources.

This technical brief is a companion piece to the QlikView Scalability Overview Technology
White Paper as it provides a fundamental grounding from which a better understanding of how
QlikView scales can be gathered. It is recommended that the reader download and read the
Scalability Overview Technology White Paper after reading this technical brief.

 | Page 3

QlikView Architecture

When approaching a decision to implement and deploy QlikView, it’s important to first
understand the roles of the various products that comprise a QlikView deployment.

Figure 1 depicts a simplified view of a standard QlikView deployment containing the location of
the various QlikView products as well as both data and application locations.

Figure 1: Architecture Overview.

QlikView deployments have three main infrastructure components: QlikView Developer,
QlikView Server (QVS) and QlikView Publisher.

QlikView Developer is a Windows-based desktop tool that is used by designers and
developers to create 1) a data extract and transformation model and 2) to create the
graphical user interface (or presentation layer).

QlikView Server (QVS) handles the communication between clients and the QlikView
applications. It loads QlikView applications into memory and calculates and presents user
selections in real time.

QlikView Publisher loads data from different data sources (oledb/odbc, xml, xls), reduces
the QlikView application and distributes to a QVS.

Because QlikView Server and Publisher have different roles and handle CPU and memory
differently it’s considered a best practice to separate these two components on different servers.

QlikView Server

QlikView Publisher

Data Sources

Source Documents

User Documents

QlikView
Delevoper

Clients

Qlik View qvw and
.meta �le structure

Qlik View qvw and
qvd �le structure

Directory Catalog
(Active Directory

E- Directory)
NAS/SAN Storage
SMTP service

QVP or HTTPS

Front End

Back End

Infrastructure resource

Data
Warehouse

QVP

 | Page 4

Back End (Including Infrastructure Resources):

This is where QlikView source documents, created using the QlikView Developer, reside.
These source files contain either a) scripts within QVW files to extract data from the various
data sources (e.g. data warehouses, Excel files, SAP, Salesforce.com) or b) the actual binary
data extracts themselves within QVD files. The main QlikView product component that resides
on the Back End is the QlikView Publisher: the Publisher is responsible for data loads and
distribution. Within the Back End, the Windows file system is always in charge of authorization
(i.e. QlikView is not responsible for access privileges).

The Back End depicted in figure 1 is suitable for both development, testing and
deployment environments.

Front End:

The Front End is where end users interact with the documents and data that they are
authorized to see via the QlikView Server. It contains the QlikView user documents that have
been created via the QlikView Publisher on the back end. The file types seen on the Front
End are QVW, .meta and .shared documents. All communication between the client and
server occurs here and is handled either via HTTPS (in the case of the AJAX client) or via the
QlikView proprietary QVP protocol (in the case of the plugin or Windows client). Within the
Front End, the QVS is responsible for client security.

Associative In-Memory Technology:

QlikView uses an associative in-memory technology to allow users to analyze and process data
very quickly. Unique entries are only stored once in-memory: everything else are pointers to the
parent data. That’s why QlikView is faster and stores more data in memory than traditional cubes.
Memory and CPU sizing is very important for QlikView, end user experience is directly connected
to the hardware QlikView is running on. The main performance factors are data model complexity,
amount of unique data, UI design and concurrent users.

 | Page 5

QlikView System Resource Usage:

At this point it’s important to describe at a fundamental level how QlikView’s core technology uses
system resources like RAM, CPU capacity and so on.
Let’s take a look at how both the QlikView Server and the QlikView Publisher both typically use
different system resources:

CPU
QlikView Server is multi threaded and optimized to take advantage of multiple processor cores.
All available cores will be used almost linearly when calculating the QlikView objects (tables and
graphs). The QVS makes a short burst of intense CPU usage when doing any calculations and
these are done in real time.

Figure 2: Typical CPU usage for the calculation of a QlikView Object.

QlikView Server has a central cache function. This means that QlikView object calculations only
need to be done once. Obviously the benefits are better user experience (i.e. faster response
times) and lower CPU utilization.

HOW DOES QLIKVIEW USE THE PROCESSOR:

QlikView leverages the processor to dynamically create aggregations as needed in real time
resulting in a fast, flexible, and intuitive experience for end users.

It is important to realize that the data stored in RAM is the unaggregated granular data. Typically
no preaggregation is preformed in the data reloading/script execution process. When the user
interface requires aggregates (e.g. to show a chart object or to recalculate after a selection is
made) the aggregation is done in real time. This requires processing power from the CPU.

CPU Usage History

QLIKVIEW SERVER (QVS)

 | Page 6

IMPACT OF NOT ENOUGH PROCESSING POWER:

The primary symptom of a lack of CPU processing power is to wait for charts to recalculate.
Under normal conditions chart recalculation takes place almost instantaneously. However with
truly massive datasets and without a corresponding increase in processing power, the time to
calculate charts can become greater than 1 sec.

If at any time QlikView performance is judged to slow down it is addressed by adding
processing power. Quite simply QlikView scales almost perfectly with the addition of more
cores and more CPU’s. If a given query takes 6 seconds to run against a single core CPU (of a
given speed), then the same query will take ~3 seconds to run against a dual core CPU (of the
same speed). It will take ~1.5 seconds against a quad core CPU and ~0.75 seconds against
two quad core CPUs, etc. One must take into account some additional processing overhead
when scaling with cores, however the effects on proportional linear scaling are minimal.
Conversely, if additional users are making the same query then the response time will scale
linearly according to the number of simultaneous users making the request and the amount of
processing power available to the application.

As an increasing number of users make requests to the application with a finite number of
cores or CPU’s, performance degradation naturally occurs. This is most commonly offset by
scaling horizontally using a clustering and load balancing technique.

MEMORY:

Main memory RAM is the primary storage location for all data to be analyzed by QlikView.

QlikView uses RAM to store the unaggregated dataset to be analyzed as well as the
aggregated data and session state for each user viewing a QlikView document.

QlikView is a snapshot based technology. The snapshot is refreshed through a process known as
reloading a QlikView document. When a QlikView document is reloaded QlikView will establish
connectivity to the datasource (or datasources) to be analyzed and extract all the unaggregated
granular data from the data source and then compresses this data. The unaggregated
compressed dataset is then saved to disk for persistent storage as a .QVW file.

At the beginning of an analytic session QlikView will load a QlikView document from persistent
disk based storage (i.e. a QVW file from hard disk) and place the entire dataset into RAM.
During an analytic session QlikView will not make a call out to the database or access any other
disk based data repository: It will only rely on the dataset present in RAM. This is what gives
QlikView the unlimited flexibility and near instantaneous response times (all data is aggregated
in RAM). But, of course, to take advantage of the benefits QlikView provides, all data to be
analyzed must fit in RAM.

FACTORS CONTRIBUTING TO QLIKVIEW USAGE OF RAM:

RAM is the single biggest factor determining the quantity of data that can be analyzed in a
QlikView environment. There are, however, many factors that determine how much RAM the
analysis of a given dataset will require.

The illustration below is a simplified diagram of some of the various usages of RAM that would
be found on a typical QlikView Server.

A major function of the QVS is
to load QlikView applications
(.qvw’s) into memory. The
memory size needed depends on:

•	QlikView application size (in
uncompressed format).

•	The application size in memory,
it is often bigger than the actual
application size.

•	How the application is
designed. A poorly designed
application could utilize
unnecessary memory amounts
(This topic is covered in the
QlikView Scalability Overview
White Paper).

•	How the data model is
designed (e.g. avoiding using
synthetic keys can reduce the
memory footprint needed).

•	Number of users accessing
applications on the server
(This topic is covered in the
QlikView Scalability Overview
White Paper).

•	A useful rule of thumb is to add
10% extra memory for each
additional user: this extra
memory is for user state and
caching. The cache memory
will be reused if needed.

 | Page 7

Figure 3: Memory usage of a QlikView deployment

RAM FOR THE OPERATING SYSTEM:

A good rule of thumb is to assume a Windows Server Operating System will typically take up
500 to 1000 MB of RAM.

RAM FOR THE QLIKVIEW SERVER PROCESS:

QVS.exe takes up relatively little RAM with no users or documents loaded it will typically be at
around 30MB. When documents are loaded and users are connected, QVS.exe will take up
more RAM due to the overhead of administering these documents and connections. This is
administrative overhead and is separate from the RAM used to load the document itself (i.e. it
does not vary with the dataset size). A good rule of thumb is to assume the QVS.exe process
will take up 100 MB of RAM.

RAM FOR OTHER APPLICATIONS RUNNING ON THE SERVER:

Running other applications on the same box as the QlikView Server is never recommended. As
a general rule the goal is to maximize the amount of RAM that will be available to analyze data
in QlikView and running other applications on the same server is contrary to this goal.

One possible exception to this is the running of a web server (either QlikView’s HTTP server
or Microsoft IIS) on the same machine as the QlikView server purely for convenience. In this
scenario the web server should be tasked only with serving QlikView content and not be tasked
with running intranet or external web content.

LOADING THE CORE UNAGGREGATED DATASET:

The core unaggregated data set is extracted and compressed during the QlikView reload
process. When a file is to be analyzed this core dataset must be loaded into RAM. This dataset
is loaded a single time and is not duplicated for multiple users concurrently accessing and
analyzing a single document.

RAM for other
Applications
Running On Server
(not recommended)

RAM for Operating
System (Windows)
- Approx. 500 - 1000MB

One or More QlikView Documents Loaded on QlikView Server

One Core Unaggregated Dataset

One or More Fields

Distinct
List of
Values

Binary
Index

One or More
User’s Session

States and
Aggregates

Overall RAM usage
on server

RAM for QlikView
Server Process
- Approx. 30 - 100MB

RAM usage profile for QlikView

 | Page 8

It is important to note that it is the characteristics of the data as it is loaded into QlikView that
is important not the characteristics of the data as it exists in the original source database.
QlikView scripting offers an extremely robust ETL capability that can either increase or
decrease the memory required depending on the characteristics of the final dataset produced
by the ETL process and ultimately loaded into QlikView.

DATA COMPRESSION: THE UNIQUENESS OF THE DATA IN EACH FIELD LOADED

Almost universally people want to start the QlikView RAM usage discussion with the number of
records in a database. However, this is not the most important factor in QlikView RAM usage.
The most important factor in QlikView RAM usage is the number of distinct data points in a
given field not the number of records.

For example suppose there are two fields that contain the following values:

Figure 4

Loading the first field into QlikView will consume approximately 1/10th the amount of RAM that
loading the second field will consume. In extreme cases (like the example above) this can prove
to be an order of magnitude or more difference in RAM usage between loading two fields with
the exact same number of records.

This pattern of RAM usage is due to the fact that when QlikView is compressing the data
during the reload process, QlikView stores the each distinct data point once only and does not
store duplicate values.

THE LENGTH OF DATA IN EACH FIELD LOADED:

“Joe’s Pizza” will take up less RAM than will an entry with a very long text string. This is done
record by record, regardless of how the field is defined by the developer.

Order Customer
Joe’s Pizza
Joe’s Pizza
Joe’s Pizza
Joe’s Pizza
Joe’s Pizza
Joe’s Pizza
Joe’s Pizza
Joe’s Pizza
Joe’s Pizza
Joe’s Pizza

Order Customer
Joe’s Pizza
Tom’s Dinner
Jim’s Pizzeria
Sal’s Italian
Liz’s Restaurant
Leroy’s Place
Jill’s Pizza
Jenny’s Place
Terry’s Diner
Kel’s Pizzeria

 | Page 9

THE NUMBER OF RECORDS IN EACH FIELD LOADED:

If QlikView stores the distinct value only once it still must maintain the relationship back to
the original instances. Looking at the first field in the example above, if QlikView stores “Joe’s
Pizza” just once it still needs to store a reference back to the original ten records. This is done
by means of storing a binary index for each field. Additional RAM is taken up to store this binary
index. The more records in the field (regardless of uniqueness) the lager this index will be. The
index is normally quite small but with large numbers of records and large numbers of fields and
tables the memory required increases.

THE NUMBER OF DATASETS LOADED:

Each QlikView Document (.QVW file) represents a discrete dataset. Loading a document
loads that document’s dataset into RAM. As a result, when multiple, separate documents are
opened, it means that multiple, separate datasets are loaded into RAM.

THE USER SESSION STATES, AGGREGATES AND UI DRAWING:

When a user opens a QlikView document the Core Unaggregated Dataset gets loaded in
to RAM but in order to draw the user interface QlikView must create and store whatever
aggregates are defined by the user interface.

For example, reference the following User Interface chart below:

Figure 5

In order to render this chart, QlikView must first access the Core Unaggregated Dataset and
calculate these totals and store them before the chart can be drawn on screen. Storing the
User Session States and Aggregates takes up RAM above and beyond the RAM used to store
the Core Unaggregated Dataset. Each user needs to have his or her own User Session States;
Aggregates are shared across all uses in a central cache.

A general rule of thumb is used for estimating the per-user additional overhead associated with
new concurrent users is to add between 1% and 10% of RAM above that used by the first user.

For example: A 1GB .qvw document uses around 4GB in RAM for the first user (based on a
multiplier of 4x to establish the initial RAM footprint based on file size). This multiplier is normally
between 2x and 10x. User number two may increase this by around 10% as their calculations
get cached resulting in a required RAM footprint of 4.4GB. User number 3 requires a further
10%, increasing the footprint to 4.8GB, and so on.

In summary, a properly designed QlikView application will not take up more than 1% to 10% of
the RAM usage for each additional user after the first.

Salesperson Total Sales Cost Margin Margin %
Tina $900 $600 $300 33%
Tom $600 $200 $400 66%

Teresa $1000 $500 $500 50%

 | Page 10

IMPACT OF TOO LITTLE RAM AVAILABLE:

Like all Microsoft Windows applications, QlikView is dependent on Windows to allocate RAM
for QlikView to use. QlikView Server will attempt to reserve RAM when it starts based on the
“Working Set Limits” set in the QlikView Server Management Console. If at any time RAM
becomes scarce, Windows may, at its discretion, swap some of QlikView’s memory from
physical RAM to Virtual Memory (i.e. use the hard disk based cache to in place of RAM).

When QlikView is allocated Virtual Memory it may be orders of magnitude slower than when
using 100% RAM. This is always an undesirable condition in QlikView and will provide a poorer
experience for the end users and may be perceived as an error condition by end users.

It is critical to realize that the process described above holds true for every Windows based
application and is not unique to QlikView.

In this respect hardware sizing is nothing new at all and in some respect must be conducted
for every machine (laptop, desktop or server) provisioned across the entire enterprise. But,
because with QlikView the amount of RAM available will dictate the amount of data that can
be analyzed the hardware sizing process is typically one of the first activities in a QlikView
deployment, but is certainly no more important than hardware sizing for any other Windows
based software application. This topic is covered in the QlikView Scalability Overview
Technology White Paper.

Hard Drive:

Because QlikView Server is used to store and process end-user applications that have been
generated from a QlikView Publisher, and because these end-user applications are typically
much smaller than their source parent applications, large disk space is typically not required for a
QVS. Minimum recommended requirements are 75GB HD in a raid 1 configuration.

CPU:

QlikView Publisher is a database load engine. Every database connection will creates one
thread, meaning that for every data load one core will be utilized almost 100%. Therefore,
the maximum number of simultaneous database loads is usually the same as number of
processor cores available. A comparison of how Publisher and the QVS uses CPU resources
highlights the best practice of not having both Publisher and QVS on the same server.

HARD DRIVE:

In a well designed system, Publisher will run specially crafted QlikView applications whose only
purpose is to create QlikView data files (qvd), QlikView data marts (qvw files with no graphical
interface) and/or reduced QlikView end-user documents (qvw files). This creates historical data
repositories that QlikView end user applications will load from (a data cache set). The advantage
of this is that it reduces database communication and shortens the reload time. The drawback
is the disk space needed to store these source files. The QlikView Publisher server often needs

QLIKVIEW PUBLISHER

 | Page 11

more hard disk space than QVS. Of course, the amount of disk size needed depends on data
amount loaded from the source databases. It is recommended to use a raid 5 or SAN/NAS drive
with at least 150GB of space.

MEMORY:

Because the Publisher is a database reload engine and file distribution service rather than an
analytics engine, it is not as memory intensive as the QVS. Therefore, memory considerations are
typically not a key factor in determining server sizing for Publisher instances.

